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The mean intercept length polygons for 
systems of planar nets 

G. M. LUO, A. M. SADEGH,  S. C. COWIN 
Department of Mechanical Engineering, The City College of The City University of New York, 
New York, NY 10031, USA 

With a view towards the characterization of microstructural anisotropy of fibrous materials, we 
have shown that the mean intercept figure for a planar N-net system of straight lines is a 
convex 2N-sided polygon. A very simple method of constructing the mean intercept figure for 
a planar N-net system is presented, It is shown, by example, that there is an inversion process 
by which one may construct a planar N-net system from its mean intercept polygon. The 
significance of these results with respect to the characterization of microstructural anisotropy 
of fibrous materials is discussed. 

1. I n t r o d u c t i o n  
The design and stress analysis of composite materials 
requires characterization and quantification of their 
microstructure. We are concerned here with com- 
posite materials containing sets of parallel fibres in 
different directions. In this paper we seek to quantify 
the directional dependence of the geometric properties 
of such materials. We consider the stereological 
method for the quantification of microstructural an- 
isotropy called the "method of directed secants in a 
plane" introduced by Saltykov [1]. This method is 
discussed by Underwood [2]. It was applied by 
Whitehouse [3] to the quantification of the anisotropy 
on planar sections of cancellous bone specimens. 
Whitehouse showed that the method could be used to 
construct ellipses representing the microstructure of 
bone specimen surfaces and that the ratio of the length 
of the major axis to the minor axis of the constructed 
ellipses represented the degree of anisotropy of the 
spongy bone specimen, while the directions of the 
major and minor axes indicated the symmetry direc- 
tions in the plane of the planar specimen. Harrigan 
and Mann [4] showed that the existence of ellipses on 
every face of a specimen in the form of a rectangular 
parallelopiped implied the existence of an ellipsoid to 
represent the anisotropy of the microstructure, and 
they noted that any ellipsoid could be represented as a 
second-rank tensor. Cowin [5] related a form of this 
second-rank tensor measure of material microstruc- 
ture, called the fabric tensor, to the anisotropic elastic 
constants of a porous material or multiphase solid. 
These relationships between microstructural para- 
meters and elastic constants were developed by 
Turner and Cowin [6] and shown by Cowin [7] to be 
consistent with similar relations based on dimensional 
arguments applied to structural models reported by 
Huber and Gibson [8]. In this paper we apply the 
"method of directed secants in a plane" to the quan- 
tification of the anisotropy of planar systems of 

straight lines. The study of planar net systems by this 
method was initiated by Tozeren and Skalak [9]. 

Although the language of this paper is pure geo- 
metry (or trigonometry), the motivation for the study 
is to develop a method of quantifying the directional- 
ity of a material microstructure consisting of systems 
of fibres in an isotropic matrix. The type and degree of 
mechanical anisotropy possessed by the material is 
directly related to directionality of the microstructure 
of the material. For example, if the fibres increase or 
decrease the stiffness and strength of the composite 
material, it is of interest to know the direction relative 
to which the axes of most fibres are closest, and the 
direction relative to which the axes of most fibres are 
most distant. The fibres in the planar net models 
considered here are straight lines of zero thickness. 

Planar nets are sets of plane-filling parallel lines. 
Figs 1, 3, 5, 7 illustrate different planar net systems. A 
planar N-net system consists of plane-filling N sets of 
parallel lines. A planar single net is illustrated in Fig. 1. 
The single net is characterized by the angle qba its lines 
make with a reference line and by the fixed distance, 
denoted by al,  between each line in the set. The net 
direction of a single net is the direction of the line 
characterizing the net. 

The mean intercept length of a planar net system in 
a specified test direction is the mean distance between 
intercepts of the test direction-line with the lines of the 
planar net system. The mean intercept length can be 
measured in all directions, including the net direction 
of each constituent planar net of the net system. A 
polar plot of each mean intercept length as a function 
of direction yields a mean intercept figure. It will be 
shown here that each mean intercept figure is a convex 
polygon for any planar net system. 

In this paper we present a general method for the 
construction of the mean intercept polygon for a 
planar N-net system. The presentation is initially in- 
ductive. In the next four sections we construct the 
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mean intercept polygon for planar single, two, three 
and four net systems, respectively. We then generalize 
these results to a planar N-net system and present 
some lemmas that make the construction and inter- 
pretation of the mean intercept polygons quite simple. 
We then show that it is possible to reverse the process 
and construct a planar N-net system from the mean 
intercept polygon. We close with a discussion of these 
results. 

2. A planar single net system 
Consider the planar single net system shown in Fig. 1 
and characterized by an angle ~ with the reference 
axes and a distance aa between parallel lines. For this 
planar single net we determine the mean intercept 
length, L(0), in the test direction 0, illustrated in Fig. 1, 
by calculating the number of intercepts per unit length 
in the test direction NL(0 ), then inverting 

1 
L(O) - (1) 

NL(O)  

The test line in the 0 direction is illustrated on the 
planar net in Fig. 1. The number of intercepts per unit 
length is easily seen to be Isin(O - ~ ) [ / a l ,  thus 

L(O) = a~ (2) 
Isin(0 - dpl)r 

The absolute value sign is necessary in Equation 2 
because NL(O)=Isin(O--~pl)l /al  if 0 _< (0--~1) _< ;~ 
and NL(0)= - - [ s in (0 - -~) ] / a~  if n_< (0--q~l) _< 2n. 
The mean intercept length polygon is a right rectangle, 
two sides of which are infinite in length due to the fact 
that the  mean intercept length becomes infinite for 0 
= q~ and 0 = ~ + ~ in a planar single net system. 

The mean intercept length polygon, which is a polar 
plot of L(0) given by Equation 2, is shown in Fig. 2. A 
typical polar direction, 0, and L(0) are indicated in the 
figure. This unboundedness of the mean intercept 
length polygon is not typical and only occurs for the 
planar single net system. 

X 2 

Figure 1 A planar single net system characterized by an angle qb~ 
with the reference axes and a distance al  between parallel lines. The 
test line is inclined at the angle 0. 
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Figure 2 The mean intercept length, L(0), figure for the planar 
single net system of Fig. 1. 

3. A p lanar  t w o  n e t  s y s t e m  
Consider the planar two net system shown in Fig. 3 
and characterized by a net with the net direction ~1 
and spacing a 1 and a second net with net direction 42 
and spacing a 2. The number of intercepts in the test 
direction 0 due to intercepts with the first net is b sin(0 

- ~1)[/al ,  and the number of intercepts in the same 
direction due to intercepts with the second net is ] sin(0 
- qb2)l/a2. The sum of two numbers of intercepts in 
the test direction yields NL(O ), and from Equation i 

1 

L(0) = k[[sin(0-al-- qbl)l + [sin(0az- ~321 ] (3) 

The mean intercept length polygon is determined from 
a polar plot of L(0), and the result is shown in Fig. 4. A 
general feature of mean intercept length polygons can 
be seen from this example. The vertices of the polygon 
lie on lines drawn from the origin that lie in the net 
direction of each of the constituent planar nets. 

The planar single net of Fig. 1 can be recovered 
from the planar two net system of Fig. 3 by letting az 
approach infinity. Increasing the value of a 2 causes 
points 1 and 1' in Fig. 4 to move apart along the line 
1-1'. As a2 tends to infinity, so do the points 1 and 1', 
and the lines 1'-2 and 2-1 become coUinear, as do the 
lines 1'-2' and 2'-1, and these two resulting straight 
lines are parallel. The vertices at 2 and 2' vanish. In 
this way Fig. 1 for the planar single net system is 
recovered from Fig. 4. 

As a special example of a planar two .net system 
consider the orthogonal two net system shown in 
Fig. 5. In this case qb 1 = 0 ~ and 1]~2 = ~ /2 .  The mean 
intercept polygon is shown in Fig. 6. 

4. A planar three net system 
A planar three net system is shown in Fig. 7 and its 
associated mean intercept length polygon is shown in 
Fig. 8 which is constructed for the special case when 
aa = 1, a 2 = 2 ,  a 3 = 3  and qb 1 = 2 0  ~ , qb2=95 ~ and 
qb 3 = 135 ~ The number of intercepts NL(0 ) in the 
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Figure 3 A planar two net system. 
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Figure 4 The mean intercept length polygon for the planar two net 
system. 

1' 1 .vj 
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Figure 6 The mean intercept length polygon for the planar ortho- 
gonal two net system. 

x2~ 

I 
Figure 7 A planar three net system. 

Figure 5 A planar orthogonal two net system. 

Along the constituent net direction lines, 1-1', 2-2', 
3-3' in Fig. 8, the values of L(0) are given by 

test direction 0 is the sum of Isin(0 - +1)1/al, )sin(0 
-+2)[/a2, and [ s i n ( 0 -  + 3 ) ] / a 3 .  Thus from Equa- 

tion 1, L(0) is given by 

t (0 )  = 1 / [  [sin(0 --- +t)l + Isin(O - +2)[ 

/ L  al az 

+ I sin(0a3- +3)1]. (4) 

L(~I) = 1.274 

/r 4 ' 2 ) [  rsin(+l - +a ) l ]  = 1 . . [ s in (+1  -- + __ 

/ L  a2 a3 

L(+z) = 0.847 

L ( + 3 )  

(5a) 

/[sm,02a  s,n,,. 
= l +~)1+ __ 

a3 

(5b) 

= 0.814 

= 1 /V Isin(+-3- -- 4,~)f 
/ k  al 

+ /sin(+3a2- +2)1] 
(5c) 

Observe that the mean intercept length polygon of 
Fig. 8 can be constructed from the data set consisting 
of net directions +1, +2, +a and the mean intercept 
lengths L(+I), L(+2) and L(+3). The method of con- 
struction is to locate the six vertices, of the polygon 
and draw straight lines connecting the vertices. The 
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Figure 8 The mean intercept length polygon for the planar three net 
system. 
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Figure 9 An illustration of the transition from the mean intercept 
length polygon for a planar three net system to that for a two net 
system obtained by allowing the spacing between the parallel lines 
of one net of the three net system to become very large (infinite), 

vertices are located at L(~i) in the directions qbi and 
qbi + zt, i = 1, 2, 3. 

We consider now the changes in Fig. 8 if we allow 
the spacing between the parallel lines in the third set, 
a3, to become infinite. These changes are indicated in 
Fig. 9. The vertices associated with qb 3 vanish because 
the two lines 1'-3 and 3-2 of Fig. 8 become collinear, 
as do the two lines 2'-3' and 3'-1. The points 1 and 1' 
of Fig. 8 move away from the origin to 1" and 1'", 
respectively, as illustrated in Fig. 9. Similarly, points 2 
and 2' of Fig. 8 move outward to points 2" and 2'" of 
Fig. 9. The outward movement corresponds to in- 
creases in the mean intercept length in these direc- 
tions. The mean intercept length increases because the 
intercepts with the third net set no longer exist. The 
new mean intercept length polygon of Fig. 9 is one 
associated with a planar two net system, like the mean 
intercept length polygon of Fig. 4. 

5. A planar four net system 
A planar four net system is shown in Fig. 10. The 
associated mean intercept length polygons for various 
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Figure 10 A planar four net system. 
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special values of al ,  a2, a3 and a 4 are shown in Fig. 11. 
The innermost mean intercept length polygon shown 
in Fig. 11 is for the special case when al -- a2 = a3 
= ar The sequence of mean intercept length polygons 
exterior to the innermost are obtained by increasing 
a z and holding a t = a 3 = a4 constant. The sequence 
of associated mean intercept length polygons grows 
larger anisotropically as shown in Fig. 11. The growth 
is characterized by the points 2 and 2' remaining fixed 
and the points 1 and 1' moving the greatest distance 
with increasing values of a 2. The associated mean 
intercept length polygon for the special case when 
al -- a 2 = a 3 = a4 is shown in Fig. 12. When the mag- 
nitudes of at = a: = a 3 -~ ar are increased uniformly 
the polygon grows large isotropically or uniformly as 
shown in Fig. 12. Note that the innermost mean 
intercept length polygon shown in Fig. 11 is the same 
as the innermost one illustrated in Fig. 12. 

6. Generalization to a planar N-net  
system 

For N sets of fibres in a planar net system the mean 
intercept length L(O) is obtained by induction as 

where al and qbi, for i =  1,2 . . . . .  N, are the line 
spacing distance and direction of the ith single planar 
net, respectively. Other conclusions can be obtained 
by induction from the results of the previous four 
sections. First, for a planar N-net system (N > 1), the 
mean intercept length polygon has 2N sides and 2N 
vertices. As-the number N of constituent nets in- 
creases, the area enclosed by the mean intercept length 
polygon decreases. 

We shall now give a rigorous proof that the mean 
intercept length figure for a planar net system charac- 
terized by N distinct nets (a~, qb~), i = 1, 2 . . . .  , N, is a 
polygon of 2N sides. First, from the definition of the 
mean intercept length L(0) given by Equation 6, it 
follows that the 2N points, L(qb~) at qb~ and qb i + n for 
i - - -1 ,2  . . . . .  N, lie on the boundary of the mean 
intercept length figure. As we have not yet shown that 
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Figure 11 Mean intercept length polygons for the planar four net 
system of Fig. 10. The polygons in this system are generated by 
increasing the value of a 2. This causes the sequence of polygons to 
increase anisotropically. 

1' 

J 

)r 

I 3 

Figure 12 Mean intercept length polygons for the planar four net 
system of Fig. 10 in the special case when as = a2 = a3 = a4. The 
outer mean intercept length polygon is obtained from the inner one 
by increasing aa = a 2 = a 3 = a 4 uniformly, or isotropically. Note 
tha t  the most  central mean intercept length polygon is the same 
shape as the mean intercept length polygons of Fig. 11. 

these points will be the vertices of the polygon, we 
shall refer to them as selected boundary points. Using 
these selected boundary points we prove the following 
three lemmas. 

6.1. Lemma 1: the boundary of the mean 
intercept figure for a planar N-net 
system is a straight line between any 
two adjacent selected boundary 
points 

Proof: the mean intercept length between any two 
selected adjacent boundary points, say K and K + 1, 

is given for (bK -- 0 _< I~)K+ 1 by 

LK(0) = 1 / [  f s in(0--  q b i ) i = l  ai 

N sin(0 - qb~)] 
- Z - qbr -< 0_< qbK+ 1 (7) J i=K+ 1 ai 

This formula is obtained from Equation 6 by evalu- 
ating the absolute value signs in the terms I sin(0 
- qbi) [ using the now restricted range of 0, namely 
d0r -< 0 _< qb~:+~. Expansion of the sine function using 
the trigonometric identity for the sine of the difference 
in two angles, the right-hand side of Equation 7 can be 
rewritten as 

1 
L,,(O) = (8) 

Br sin 0 - CK cos 0 

where 

and 

c o s  ~K  
BK = D K  + - -  (9a) 

aK 

sin d~K 
C/~ = E K + - (9b) 

aK 

g - 1  COS I~) i N COS (l)i 
D,, = E E (lOa) 

i=1 ai i = K + I  ai 

K- 1 sin dpi N sin qb i 
E~ = ~ E (10b) 

/ = 1  ai i = K + I  ai 

In a subsequent calculation we will need the formulae 

COS (])K 
BK_ 1 = D r (lla) 

a K 

sin ~r  
CK-1 = E~ (lib) 

aK 

which can be shown easily using Equations 9 and 10. 
Introducing the notation 

A K = (B 2 + C~) 1/2 (12a) 

B~ 
cos t~ K - (12b) 

AK 

CK 
sin k0K -- (12c) 

AK 

Equation 8 for LK(0) is rewritten in the form 

1 
LK(0) = ~r  -< 0_< qb~C+l (13) 

AK sin(0 -- *K) 

where A~ and q~ are functions of ai and ~i, 
i =  1,2 . . . . .  N. Equation 13 is the polar repres- 
entation of a straight line that passes through the 
points [LK(~),qb~] and [Lr+l(dpK+l),(pr+l] (or 
[LK(qbK),dp~+Tt ] and [Lr+a(dpK+l), ~k§ 
That Equation 13 represents a straight line can be 
easily seen by converting it from polar to Cartesian 
coordinates. Specifically, using the formulae x = L~ 
cos 0 and y = L~ sin 0 for the Cartesian coordinates x 
and y in terms of the polar coordinates LK and 0, 
elimination of sin 0 and cos 0 from Equation 13 yields 
the expression yAK cos ~ - xAK sin ~K = 1 which is 
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easily recognized as the equation of a straight line 
because A K and 0 r  are constants. This completes the 
proof of the lemma. 

6.2. Lemma 2: the boundary of the mean 
intercept length figure for a planar 
N-net system is continuous at the 
selected boundary points 

Proof: the mean intercept lengths L K _ 1 (0)  and LKO in 
the intervals qbK-~ <-- 0 < d~K and qb K _< 0 _< qbK+ ~, 
respectively, are given by 

/ 1 - %  ~ sin(O -qb i )  
LK-I(0) = 1 / f . a . ,  

/ L i = l  ai 

_ ~ sin(O_- * / ) /  qbK-, < 0  ___ qb K 
i = K  al J 

(14) 

and Equation 7. At the selected boundary point 
0 = q%:, we find that these two lengths are equal 

LK_I(qbK) -= LK(d?K ) 

= 1 / [ ~  ' s i n (qbK-  qb') 

ki=l ai 

N sin(qbK _ ~)i) ] 
- ~ (151 

i = K + I  al  

This completes the proof of this lemma. 

From these two lemmas it follows that the bound- 
ary of the mean intercept length figure is a continuous 
curve composed of straight line segments that change 
direction at the selected boundary points. It follows 
that the mean intercept figure for any planar net 
system characterized by N distinct nets (ai, qb~), 
i = 1, 2 . . . .  , N, is a polygon of 2N sides and that the 
vertices of the polygon are the selected boundary 
points. 

The final point to be proved in a rigorous manner is 
contained in the following lemma. 

6.3. Lemma 3: the M IL polygon for a planar 
N-net system is always convex 

Proof: we consider two vertices K and K + 1 of the 
MIL polygon illustrated in Fig. 13. We begin the proof 
by observing that Equations 6 and 13 are identical in 
the interval ~K --< 0 < qb K + ~, therefore 

N [sin(0 
AKsin(0 -- OK) = 

i= 1 a l  

qb K < 0 _< ~K+I (16) 

If we set 0 = q~K in Equation 16 and expand the left- 
hand side, then using Equations 9a,b and 12 we can 
show 

Isin(qbx - q%)I 
Z.a 

i== I al 
= B K s i n ~  -- CKCOS~K 

= D K s i n ~ K  --  EKCOS~K (17) 
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Figure 13 Two vertices, the Kth  and the (K + 1)th, for the mean 
intercept length polygon of a planar N-net system. 

The angle 0K is the angle of interest in this proof. It 
was introduced by Equation 13 and its negative is 
illustrated in Fig. 13. As we wish to prove a relation- 
ship between 0K and 0K- t  we calculate the quantity 
sin(0K - 0K-1)by  expanding the sine expression and 
using Equations 12a, b, c in the cases when we take K 
as K and when we take K as K - 1, thus 

sin(0K -- %c- 1) = sin 0x cos 0K- 1 -- sin 0K- 1 cos 0K 

1 
(CKBK_ 1 -- CK_1BK) 

A K A K -  1 

(18) 

Substitution of Equations 9a,b and 11 into Equation 
18 yields 

2 
sin(OK -- O r -  1) - 

aKAKAK- 1 

(DK sin qb K - E K cos qbK) (19) 

Finally, substitution of Equations 17 into Equation 19 
yields 

2 
sin(OK -- O r - t )  -- 

aKAKAK-1 

Isin(qb~: - ~i)l 
(20) 

i = 1 al 

Because the quantity of the right hand side of Equa- 
tion 20 is positive we have shown that 

s i n ( 0 K -  0K-~) > 0 (21) 

This shows that OK > 0K-1 if 0 < 0K--  0K-1 < re, 
which demonstrates the convexity of the polygon. This 
completes the proof of the lemma. 

7. The inverse p r o b l e m  
The inverse problem is now considered, namely the 
construction of a planar net system from the mean 
intercept length figure rather than vice versa. The 
solution to this inverse problem is illustrated by an 
example. The example selected is to construct planar 
twelve net systems that will yield a mean intercept 
length polygon of 24 sides that is approximately in the 
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Figure 14 The mean intercept length polygon for the planar system 
that is chosen to approximate an ellipse. 

shape of an ellipse with a major  axis a and a minor  
axis b. The ellipse and  its app rox ima t ion  by a 24 sided 
polygon are il lustrated in Fig. 14. 

The equat ion for the ellipse is (x /a)  2 + (y /b)  2 = 1 in 
Car tes ian coordinates  or  

r = 1 / (  c ~  sin20"] '/2 (22) 
b2 ) 

in po la r  coordinates.  The  major  and minor  axes of this 
ellipse are taken as a = 1.5 and b = 1, respectively. 
The  net directions, i l lustrated in Fig. 14, for the 12 
selected nets are qb t = 0 ~ qb2 = 5 ~ qb3 = 25 ~ ~4 = 45~ 
qb 5 = 65 ~ qb 6 = 85 ~ I~) 7 = 90 ~ qb 8 = 95 ~ qb 9 = 115 ~ 
~ to  = 135~ ~ ) 1 1  = 155~ and d012 = 175 ~ The mean  
intercept length L ( ~ ) ,  i = 1, . . . ,  12, associated with 
each of these net directions is determined by requiring 
that  the value of L(qb 1) lie on the curve of the specified 
ellipse. The formula  for this follows f rom Equat ions  6 

and 22, thus 

L I , , )  = Jsin/, ,  - , , ) l  

{ i =  1 ai 

= 1 / (  c~ sin2qb;) '/2 
It ,  o + - U - )  j =  1 . . . .  ,12 

(23) 

In the system of 12 Equat ions  23, there are 12 un- 
knowns,  the 12 a i. All the other  quantities, a and b and 
the qbl, i = 1 . . . . .  12, have been specified. Actually, 
because of the symmet ry  in the p rob lem (i.e. L(0 ~ 
= L(180~ L(5 ~ = L(175~ L(25 ~ = L(155~ L(45 ~ 
= L(135~ L(65 ~ = L( l15  ~ and L(85 ~ = L(95~ 

there are only seven distinct als to find. These ais are 
given by a 1 = 15.31 for L(0 ~ = L(180~ a 2 = 6.483 
for L(5 ~ = L(175~ a 3 = 5.108 for L(25 ~ = L(155~ 
a ,  = 7.663 for L(45 ~ = L(135~ a 5 = 10.69 for L(65 ~ 
=L(115~ a 6 =  19.78 for L(85 ~  ~ and 

a 7 = 51.48 for L(90~ The  resulting p lanar  twelve 
net system is illustrated in Fig. 15. 

8. Discussion 
Results concerning the mean  intercept figures for 
p lanar  N-net  systems have been developed for the 
purpose  of characterizing the micros t ructura l  aniso- 
t ropy  of fibrous materials.  With  some degree of r igour  
we have shown that  the mean  intercept figure for a 
p lanar  N-net  system is a convex 2N-sided polygon.  
We have illustrated a very simple me thod  of con- 
structing the mean  intercept figure for a p lanar  N-net  
system. Fur ther  we have shown, by example,  that  
there is an inversion process by which one may  con- 
struct a p lanar  N-net  system f rom its mean  intercept 
polygon.  

al 

Figure 15 The planar twelve net system whose mean intercept length polygon approximates the ellipse of Fig, 14. 
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An alternate approach to the characterization of 
microstructural anisotropy is to construct a polar plot 
of the number of intercepts per unit length, NL(O), in 
the test direction 0 rather than a polar plot of the 
mean intercept length L(0) in the test direction 0. The 
polar plot of the number of intercepts per unit length 
NL(O) produces a figure called the "rose-of-the-num- 
ber-of-intersections". Underwood [10] investigates 
the characterization of the anisotropy of planar net 
systems using the rose-of-the-number-of-intersections. 
A comparison of the two methods can be obtained 
easily by comparing the mean intercept length poly- 
gons given here with the rose-of-the-number-of-inter- 
sections plots given by Underwood for the same 
planar net systems. One advantage of the mean inter- 
cept length approach is the representation of the result 
by a convex polygon so tha t  it is easy to evaluate 
visually the more pronounced and less pronounced 
directions of fibre orientation. A second advantage of 
the mean intercept length approach is the inversion 
algorithm described here. From this result it is easy to 
see how it is possible to increase the number of nets in 
the planar net system to infinity and still have a 
prescribed type of anisotropy in the mean intercept 
length figure. Intuition suggests that as the number of 
planar net systems becomes arbitrarily large, the mean 
intercept length figure should become circular, sugges- 
ting isotropy. Underwood [10] makes a remark to this 
effect on p. 108. However, using the inversion al- 
gorithm it is easy to see that one can construct a 
planar net system with an arbitrarily large number of 
nets that has any closed convex curve as its mean 
intercept length figure. We presented the case of an 

ellipse and a twelve net system here, and it easy to see 
how this method extends to any closed convex curve 
and any number of planar net systems. 
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